Preview

Science. Innovations. Technologies

Advanced search

SPECIFICS OF DIGITAL FILTERING MODELING FOR PRODUCTIVE DEPOSITS (BY EXAMPLE OF THE KOSHEKHABLSKOYE FIELD)

https://doi.org/10.37493/2308-4758.2021.2.1

Abstract

Introduction. The article discusses specifics of creating a digital filtration model for carbonate deposits of the Oxford stage of the Jurassic system, based on structural constructions and the results of interpretation of geological studies. Materials and research methods. Filtration calculations and approaches to the modeling a geological section of productive deposits are presented. The necessary initial data for the calculation were obtained from the results of the geological and geophysical studies and field data analysis. Research results and discussion. The results of an integrated interpretation of geological-geophysical and core data for modeling a productive deposit are considered. The main stages of reservoir modeling are described: construction of a structural model of the reservoir; creation of a facial model; filtration-capacitive modeling. The filtration model is adapted to the actual data on the development history based on deinition of iltration and capacitive reservoir properties and adjusted for predictive calculations of development options. The model validity for the Oxford productive sediments was assessed. Conclusions: The results of an integrated interpretation of geological-geophysical and core data for modeling a productive deposit are considered. The main stages of reservoir modeling are described: construction of a structural model of the reservoir; creation of a facial model; filtration-capacitive modeling. The filtration model is adapted to the actual data on the development history based on deinition of iltration and capacitive reservoir properties and adjusted for predictive calculations of development options. The model validity for the Oxford productive sediments was assessed. 1. Integrated interpretation of field and core survey data, well testing results was carried out when calculating hydrocarbon reserves, while the integral error of the input data for constructing a filtration model did not exceed 20%. 2. The results of constructions showed an increase in the area of gas content by 112% due to the delineation of the zone of scattered bioherms based on the analysis of seismic data. The allocation of the bottom of the bioherm zone using the common depth point method in a three-dimensional format led to a decrease in the total thickness of the zone of biohermal formations and, accordingly, the average gas-saturated thickness by 17%. 3. During geological modeling based on seismic data analysis, the following parameters were obtained: gas-bearing area - 29.5 sq. km; average gas-saturated thickness - 23.8 m; reservoir gas reserves - 13.641 milliard cubic meters; geological reserves of condensate - 111 thousand tons, of which 94 thousand tons are recoverable.

About the Authors

R. A. Gasumov
North Caucasus Federal University
Russian Federation


E. R. Gasumov
Azerbaijan State University of Oil and Industry
Russian Federation


References

1. Гасумов Р.А. Аппроксимационные математические модели эксплуатационных свойств газовых скважин и их применение к расчетам прогнозных дебитов / Гасумов Р.А., Толпаев В.А., Ахмедов К.С., Першин И.М., Гасумов Э.Р. // Нефтепромысловое дело. 2019. № 5 (005). С. 53-59.

2. Регламент по созданию постоянно действующих геолого-технологических моделей нефтяных и газонефтяных месторождений: РД 153-39.0-047-00: утв. Минтопэнерго России: введ. в действие приказом № 67 от 10.03.2000. М., 2000.

3. Методические указания по созданию постоянно действующих геолого-технологических моделей нефтяных и газонефтяных месторождений. (Часть 1. геологические модели. ч. 2. фильтрационные модели): разработаны Федеральным государственным учреждением «экспертнефтегаз» министерства энергетики российской федерации. М.: ВНИИОЭНГ, 2003.

4. Корнеев В.И. Прогнозирование коллекторов и поиски неантиклинальных ловушек в западном предкавказье по данным сейсморазведки / В.И. Корнеев, В.Л. Крининевич. М.: Геология нефти и газа. № 3. 1979. с. 64.

5. Аль6ом палеток и номограмм для интерпретации промыслово-геофизических данных. М.: Недра, 1984.

6. Дуркин С. М. Моделирование процесса разработки нефтяных месторождений (теория и практика): учебное пособие. Ухта: УГТУ, 2014. 104 с.

7. Математические модели расчета фильтрационных процессов на газоконденсатных месторождениях / Гасумов Э.Р., Гасумов Р.А. // О новой парадигме развития нефтегазовой геологии: Материалы Международной научно-практической Конференции Казань: Изд-во «Ихлас», 2020. С. 174-178.

8. Gasumov E.R. Time of profitable operation of production wells at the final stage of development of a gas field // American Scientific Journal. 2020. №. 40. Vol. 2. р. 32-35.


Review

For citations:


Gasumov R.A., Gasumov E.R. SPECIFICS OF DIGITAL FILTERING MODELING FOR PRODUCTIVE DEPOSITS (BY EXAMPLE OF THE KOSHEKHABLSKOYE FIELD). Science. Innovations. Technologies. 2021;(2):7-28. (In Russ.) https://doi.org/10.37493/2308-4758.2021.2.1

Views: 64


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2308-4758 (Print)