Preview

Science. Innovations. Technologies

Advanced search

INVESTIGATION OP THE SKIN FACTOR IN STEADY-STATE GAS FLOW OBEYING NONLINEAR FILTRATION LAW

https://doi.org/10.37493/2308-4758.2021.4.1

Abstract

Introduction. The productivity of the wells at gas and gas condensate fields along with the wells at underground gas storage facilities, depends on such parameters as thermodynamic conditions, properties of the produced fluid, method of opening and completion, filtration-volumetric and geometrical characteristics of the formation. To identify the factors affecting the flow rate of wells, the information obtained as a result of the interpretation of the data of systematically conducted gas well tests is used. The development of mathematical models for assessing the factors affecting the technological regime of gas wells' operation, followed by the formation of a list of candidate wells for wells intervention is an urgent approach for increasing the productivity of underground gas storage facilities. Materials and research methods. The processing of the results of gas well tests is based on the theoretical provisions of the iltration of luids in a porous medium obeying to linear and nonlinear laws. The results of well tests under steady-state filtration modes provide the most reliable estimate of the numerical values of the coefficients of filtration resistances A and B. The paper analyzes the reasons for the change in the coefficients A, B, and their main parameters by the example of underground gas storage wells. The definition of the turbulence coefficient p, which is included in the quadratic term of the equation of gas filtration obeying to the nonlinear law, has been substantiated. Since the largest pressure drop in the producing formation occurs in the immediate vicinity of the wellbore, the main factors affecting the iltration resistance in the bottomhole formation zone are the radius and degree of change in the permeability coefficient of the contaminated zone, as well as the radius of influence and the height of the sandclay plug. Research results and their discussion. To identify the parameters of the bottomhole formation zone, mathematical models have been developed for assessing the values of skin factors for the coefficients A and B, characterizing the linear and turbulent filtration resistance factors under the nonlinear law of gas filtration, respectively. The obtained formulas for calculating skin factors for cases of the presence of contamination of the bottomhole formation zone or sand-clay plug make it possible to determine the radius and permeability coeficient of the contaminated zone, as well as the radius of influence and height of the sand-clay plug. Mathematical models have been tested on synthetic wells of underground gas storage facilities. For these wells, the conditions for the change in the fiiltration resistance coefficients from the initial values A and B (without skin factors) to the current As and Bs (with regard to skin factors) are modeled. Conclusions. The paper presents the methodological foundations for assessing the main parameters of the bottomhole formation zone which affect the productivity of gas wells. The developed methodology can also be used to assess well interventions already performed to increase the productivity of gas wells.

About the Authors

V. V. Verzhbitsky
North-Caucasus Federal University
Russian Federation


A. I. Shchekin
North-Caucasus Federal University
Russian Federation


R. E. Shesterikova
North-Caucasus Federal University
Russian Federation


References

1. Васильев В. А., Гунькина Т. А., Ливинцев П. Н., Турская О. Ю. К вопросу диагностики скважин подземных хранилищ газа по результатам анализа коэффициентов фильтрационных сопротивлений // Вестник Северо-Кавказского федерального университета, 2015. № 1(46). С. 14-19.

2. Мулявин С. Ф., Колев Ж. М., Мамчистова Е. И., Насырова А. И. Численное моделирование подземного хранения газа в водоносном наклонном пласте // Наука Инновации. Технологии, 2020. № 4. С. 41-52. DOI 10.37493/23084758.2020.4.4.

3. Гасумов Р. А., Гасумов Э. Р. Особенности цифрового фильтрационного моделирования продуктивных залежей (на примере Кошехабльского месторождения) // Наука. Инновации Технологии, 2021. № 2. С. 7-28. DOI 10 37493/23084758 2021.2.1.

4. Подземная гидромеханика / К. С. Басниев, Н. М. Дмитриев, Р. Д. Каневская, В. М. Максимов. Москва-Ижевск: Институт компьютерных исследований, 2006. 448 с.

5. Васильев В. А., Гришин Д. В., Голод Г. С., Епишов А. П., Гунькина Т. А., Машков В. А. Теория и практика газа в условиях разрушения пласта-коллектора. М : ТПС Принт, 2016. 264 с.

6. Forchheimer, Ph. Wasserbewegung durch Boden // 2 Ver Deutsch. Ing. 45, 1901. 178188.

7. Алиев З. С., Марков Д. А. Идентификация параметров имеющихся скважин при анализе данных в процессе разработки залежи для корректировки проектных показателей // Труды РГУ нефти и газа (НИУ) им. И. М. Губкина. 2017. № 4(289). С. 40-55.

8. Р Газпром 086-2010. Инструкция по комплексным исследованиям газовых и газоконденсатных скважин. М : Газпром экспо, 2011. Ч I. 234 c.

9. Щелкачев В. Н., Лапук Б. Б. Подземная гидромеханика. Москва; Ижевск: Институт компьютерных исследований, 2001. 736 с.

10. Маскет М. Течение однородных жидкостей в пористой среде. Москва; Ижевск: Институт компьютерных исследований, 2004. 628 с.

11. Лейбензон Л. С. Движение природных жидкостей и газов в пористой среде. Москва: ОГИЗ, 1947. 244 с.

12. Fancher G. H. Flow of Simple Fluids Though Porous Materials / G. H. Fancher, J.A. Lewis // Ind. Eng. Chem. 25. 1933 1139-47.

13. Firoozabadi A. An Analysis of High Velocity Gas Flow Though Porous Media / A. Firoozabadi, D. L. Katz, J. Pet. Tech. 1979. 211-16.

14. Wong S. W. Effect of liquid saturation on turbulence factors for gas liquid systems. Journ. of Can. Petr. Tech. 1970. 274-278.

15. Li, D. Literature review on correlation of the non-Darcy coefficient / D. Li, T. W. Engler // SPE. 2001. SPE-70015-MS DOI:10.2118/70015-MS.

16. Friedel T. Investigation of non-Darcy flow in tight-gas reservoirs with fractured wells // Torsten Friedel, Hans-Dieter Voigt / Elsevier Journal of Petroleum Science and Engineering 54, 2006 P. 112-128.

17. A F van Everdingen and W Hurst The Application of the Laplace Transformation to Flow Problems in Reservoirs. Trans. AIME, Vol. 186, 1949. P. 305-24.

18. Yildiz, T. Assessment of Total Skin Factor in Perforated Wells / T. Yildiz, 2013. SPE-82249 MS DOI: 10.2118/82249-MS.

19. Erarsian S. Non-Darcy Flow Behavior in Partially Penetrating Gas Wells / S. Erarsian; C. Ayan; W. J. Lee, 1991. SPE-21401-MS DOI: 10 2118/21401-MS.

20. Gomes E. Analytical Expressions for Pseudoskin for Partially Penetrating Wells Under Various Reservoir Conditions / Edmond Gomes, A. K. Ambastha, 1993. SPE-26484-MS DOI: 10.2118/26484-MS.

21. Saidikowski R. M. Numerical Simulations of The Combined Effects of Wellbore Damage And Partial Penetration / Ronald M. Saidikowski, 1973. SPE-8204-MS DOI: 10.2118/8204-MS.

22. M. F. Hawkins, Jr A note on the skin efect Trans AIME, Vol. 207, 1956. P. 356-357.


Review

For citations:


Verzhbitsky V.V., Shchekin A.I., Shesterikova R.E. INVESTIGATION OP THE SKIN FACTOR IN STEADY-STATE GAS FLOW OBEYING NONLINEAR FILTRATION LAW. Science. Innovations. Technologies. 2021;(4):7-26. (In Russ.) https://doi.org/10.37493/2308-4758.2021.4.1

Views: 79


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2308-4758 (Print)