Preview

Science. Innovations. Technologies

Advanced search

ESTIMATION OF THE CHARACTERISTICS OF THE INTENSITY OF HAIL ON GLOBAL ATMOSPHERIC MODEL OUTPUT DATA GFS NCEP

https://doi.org/10.37493/2308-4758.2021.4.7

Abstract

Introduction. Dangerous convective weather phenomena have a pronounced tendency to increase, which necessitates the development of new approaches to their forecasting. This is favored by the operational availability of the Earth's atmospheremodelingresults. In this paper, the possibility of predicting the characteristics of hail intensity based on the atmospheric stratification values obtained by the global forecast model (GFS NCEP) is considered. Such characteristics of hail intensity as the area of dead crops and the maximum diameter of hail, which have found application in research of hail and the effectiveness of active effects on hail processes, are considered. Materials and methods of research. The research materials were the output data of the GFS NCEP global atmospheric model with a 24-hour lead time and the characteristics of hail intensity provided by paramilitary services for active impact within the radius of representativeness of the actual aerological sounding dataat the MineralnyeVody station. The parameters of the atmosphere were preliminarily calculated, the most informative ones were selected using a biserial correlation coeficient and factor analysis. The subsequent assessment of the characteristics of the hail intensity was carried out by the method of multiple regression analysis. The results of the research and their discussion. Regression equations were derived for the area of dead crops and the maximum diameter of hail. Estimation of the regression equation'sparameters characterizing the statistical significance and practical applicability of the model showed their compliance with the criteria imposed on them. Conclusions. The proposed approach to forecasting the characteristics of hail intensity according to the global atmospheric model has shown its eficiency and can be used in practice with a high-quality and sufficient amount of initial data.

About the Authors

A. K. Kagermazov
High-Mountain Geophysical Institute
Russian Federation


L. T. Sozaeva
High-Mountain Geophysical Institute
Russian Federation


References

1. Raupach, T. H., Martius, O., Allen, J. T. et al. The effects of climate change on hailstorms. Nat Rev Earth Environ. 2021. Vol. 2. Р. 213-226. https://doi.org/10.1038/s43017-020-00133-9.

2. Dzombak B. Severe hailstorms are costly and hard to predict // Eos. 2021. № 102. https://doi.org/10.1029/2021EO158268.

3. Беленцова В.А., Федченко Л. М., Чеповская О. И. Оценка интенсивности градовых процессов на Северном Кавказе // Труды ВГИ. 1974. Вып. 25. С. 3-16.

4. Беленцова В.А., Федченко Л. М. О влиянии циркуляции и термодинамического состояния нижнего слоя тропосферы на локализацию и интенсивность конвективных процессов на Северном Кавказе // Труды ВГИ. 1979. Вып. 44. С. 48-59.

5. Данилова Н. Е., Семенова Ю.А., Смерек Ю. Л., Закинян Р.Г. Влияние подоблачной конвекции на развитие облачной конвекции // Наука Инновации Технологии. 2018. № 4. С. 131-150.

6. Федченко Л. М., Беленцова В.А., Берова М.А. Прогноз интенсивности градовых процессов на Северном Кавказе // Труды ВГИ. 1983. Вып. 50. С. 21-35.

7. Kalnay E., Kanamitsu M., and Baker W. E. Global numerical weather prediction at the National Meteorological Center // Bull. Amer. Meteor. Soc. 1990. Vol. 71. P. 1410-1428.

8. Kanamitsu M. Description of the NMC global data assimilation and forecast system // Weather and Forecasting. 1989. Vol. 4. Р. 335-342.

9. Kanamitsu M., Alpert J. C., Campana K. A. et al. Recent changes implemented into the global forecast system at NMC // Weather and Forecasting. 1991. Vol. 6. Р. 425-435.

10. Кагермазов А. Х., Созаева Л. Т. Прогноз града с заблаговременностью до трех суток по выходным данным глобальной модели атмосферы // Труды ГГО. 2020. Вып. 598. С. 204-214.

11. URL: http://www.emc.ncep.noaa.gov (дата обращения: 14.04.2020).

12. Кагермазов А. Х. Цифровая атмосфера. Современные методы и методология исследования опасных метеорологических процессов и явлений. Нальчик: Печатный двор, 2015. 215 с.

13. Иберла К. Факторный анализ. М.: Статистика, 1980. 398 с.

14. Бююль А., Цёфель П. SPSS: Искусство обработки информации Анализ статистических данных и восстановление скрытых закономерностей: Пер с нем. СПб : ДиаСофтЮП, 2005. 608 с.


Review

For citations:


Kagermazov A.K., Sozaeva L.T. ESTIMATION OF THE CHARACTERISTICS OF THE INTENSITY OF HAIL ON GLOBAL ATMOSPHERIC MODEL OUTPUT DATA GFS NCEP. Science. Innovations. Technologies. 2021;(4):113-126. (In Russ.) https://doi.org/10.37493/2308-4758.2021.4.7

Views: 38


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2308-4758 (Print)