Preview

Science. Innovations. Technologies

Advanced search

POSSIBILITIES OF INCREASING THE EFFICIENCY OF PYROTECHNICAL GENERATORS OF ICE-FORMING AEROSOL

https://doi.org/10.37493/2308-4758.2022.1.5

Abstract

Introduction. The currently achieved eficiency of pyrotechnic generators of ice-forming aerosol, calculated on pure silver iodide, is 1E+14 active particles at a temperature of minus 10 °C. Meanwhile, since there is currently data on the activity of silver iodide particles with a size of 50 nm at this temperature and below, and given that approximately 1E+19 particles of this size can be obtained from 1 g of silver iodide, there is reason to assume a signiicant increase in the efficiency of existing pyrotechnic compositions. In this work, the ways of increasing the efficiency of existing pyrotechnic generators and means of active influence are investigated. Materials and methods of the research. Laboratory experiments were carried out on the physical modeling of the combustion processes of pyrotechnic compositions under the inluence of various conditions. The spectra of the combustion products of pyrotechnic compositions obtained in the study of the operating modes of the generators and the variants of the generator design were analyzed. The results of the study and their discussion. The factors influencing the change in the combustion spectra of the pyrocompositions of the generators of ice-forming aerosol are analyzed. It is shown that the blowing speed significantly changes the aerosol spectrum; an increase in the number of nozzle openings and the organization of the drift mixing mode of gas jets lead to an increase in the yield of active particles in the size range of 50-70 nm; an increase in the operating pressure at which the generator operates leads to an increase in the percentage of silver iodide that has passed into the vapor phase without decomposition by about two times. Conclusions. The results of experiments on increasing the yield of active ice-forming particles during the operation of pyrotechnic generators under the inluence of the following factors are presented: change in the blowing speed of the pyrotechnic generator; changing the geometry of the jets formed during the combustion of the generator; changing the direction of blowing the torch; change in the content of silver iodide in combustion products.

About the Authors

A. G. Shilin
Institute of Experimental Meteorology
Russian Federation


B. M. Khuchunaev
High-Mountain Geophysical Institute
Russian Federation


References

1. Claudia M Baban N Andre W., and Ulrike L. Ice nucleation efficiency of AgI: review and new insights. Atmos. Chem. Phys. 2016. № 16. P. 8915-8937.

2. Vincent J. Schaefer, Schenectady, and Bernard Vonnegut, Alplaus, N. Y., Method of crystal formation and precipitation. US2527230A

3. Плауде Н. О. , Соловьев А. Д. Льдообразующие аэрозоли для воздействия на облака. Обнинск: ВНИГМИ-МЦД, 1979. 82 с.

4. Snider J. R. R. G. Layton, Caple G. , Chapman D. Bacteria as condensation nuclei //j. Rech. Atmos. 1985. Vol. 19. № 2-3. P 139-145

5. Alexander D. Harrison, Thomas F. Whale, Michael A. Carpenter, Mark A. Holden, Lesley Neve, Daniel O'Sullivan, Jesus Vergara Temprado, and Benjamin J. Murray «Not all feldspars are equal: a survey of ice nucleating properties across the feldspar group of minerals» Atmos. Chem. Phys. 2016. № 16. P. 10927-10940

6. Alexander D. Harrison, Katherine Lever, Alberto Sanchez- Marroquin, Mark A. Holden, Thomas F. Whale, Mark D. Tarn, James B. McQuaid, and Benjamin J. Murray. The ice-nucleating ability of quartz immersed in water and its atmospheric importance compared to K-feldspar. Atmos. Chem. Phys. 2019. № 19. P. 11343-11361.

7. Andreas Peckhaus, Alexei Kiselev, Thibault Hiron, Martin Ebert, and Thomas Leisner. A comparative study of K-rich and Na/Ca-rich feldspar ice-nucleating particles in a nanoli-ter droplet freezing assay. Atmos. Chem. Phys. 2016. № 16. P. 11477-11496.

8. Andre Welti, Ulrike Lohmann, and Zamin A. Kanji. Ice nucleation properties of K-feldspar polymorphs and plagioclase feldspars. Atmos. Chem. Phys. 2019. № 19. P. 10901-10918.

9. Плауде Н. О. Исследование льдообразующих свойств аэрозолей йодистого серебра и йодистого свинца // Труды ЦАО. 1967. Вып. 80. С.88.

10. Сумин Ю. П. Результаты исследований льдообразующего действия пиротехнических составов с йодидами серебра и свинца при воздействии переохлажденные слоистообразные облака / Ю. П. Сумин, Н. В. Торопова // Труды ГГО. 1972. Вып. 278. С. 78-90.

11. Industrial hygiene and toxicology. Vol. II. 2nd rev. ed. Frank A. Patty, Editor. John Wiley & Sons, Inc. , 605 Third Ave. , New York 16, N Y 1963.

12. Пащенко С. Э. , Бакланов А. М. , Горбунов Б. З. , Какуткина Н.А. , Куценогий К. П., Сидоров А. И., Кравченко И. П. Исследование дисперсности и льдообразующей активности аэрозолей иодистого серебра, генерируемого пиросоставами // Известия академии наук СССР Физика атмосферы и океана Т. 18, № 5, 1982, С. 506-512.

13. Трусов Б.Г. Моделирование химических и фазовых равновесий при высоких температурах (АСТРА.4/рс). Москва: МГТУ им. Н. Э. Баумана. 1994. 50 с.

14. Семенова Ю.А. , Закинян А. Р., Смерек Ю. Л., Данилова Н. Е. Закинян Р. Г. Исследование вихревого состояния атмосферы // Наука. Инновации. Технологии. 2016. №3. с. 83-88.

15. Шилин А.Г. , Андреев Ю. В., Иванов В. Н., Панов В. Н., Пузов Ю. А., Савченко А. В. Исследование функционирования генераторов льдообразующего аэрозоля в условиях, максимально приближенных к реальным . г Нальчик. Доклады Всероссийской открытой конференции по физике облаков и активным воздействиям на гидрометеорологические процессы . 8-10 октября 2021 г. С. 386-390.


Review

For citations:


Shilin A.G., Khuchunaev B.M. POSSIBILITIES OF INCREASING THE EFFICIENCY OF PYROTECHNICAL GENERATORS OF ICE-FORMING AEROSOL. Science. Innovations. Technologies. 2022;(1):87-110. (In Russ.) https://doi.org/10.37493/2308-4758.2022.1.5

Views: 48


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2308-4758 (Print)