Preview

Science. Innovations. Technologies

Advanced search

BOUND SOLITON STATES LOCALIZED NEAR DEFECT IN A NONLINEAR MEDIUM

Abstract

Introduction: the relevance of the study is due to the fact that the effects of localization of excitations near the interfaces of nonlinear media play an important role in various technical applications of solid-state and opto-electronics. The aim of the paper is to find the solutions of the nonlinear Schrodinger equation and the energy levels of stationary localized near the defect states in the framework of the model, which is a generalization of models of two-level systems. Materials and methods: methods of theoretical physics of solids and nonlinear dynamics based on traditional methods of mathematical physics are used to investigate the localization energy of excitations in nonlinear media with defects. Results and discussion: The model generalized of the model excitation interacting on a defect with two branches of the dispersion law to the case of a nonlinear medium is presented in the article. The model is based on the nonlinear Schrodinger equations. Nonlinear Schrodinger equations describe the dynamics of excitations in nonlinear media of the Kerr type. The problems of the existence of different types of soliton states in a two-level system with different parameters of the dispersion law are considered. Solutions of the nonlinear Schrodinger equations with positive and negative anharmonicity in the focusing and defocusing media separated by a planar defect with Kerr nonlin-earity are obtained and analyzed. Conclusions: It is shown that in the system under consideration there exist nonlinear localized states of several types, which are related soliton solutions of asymmetric proiles. The energies of bound on defect soliton states are determined for cases of positive and negative nonlinearity of the medium. Conditions for the existence of such coupled soliton states are derived. In limiting cases, characterized by the degree of proximity to the edge of the lower boundary of the branch of the continuous spectrum, the energy levels are obtained in an explicit analytical form. The states considered in this paper describe the damping of the ield, both symmetric and asymmetric with respect to the interface of the media when moving away from it. The existence of bound soli-ton states is important to develop of quantum systems based on the properties of nonlinear surface waves in layered structures. Systems of such a type possess a wide range of important physical applications in nonlinear dynamics of a solid body and in nonlinear optics in the development of devices using nonlinear photonic crystals and periodic waveguide structures.

About the Author

Sergey Evgenyevich Savotchenko
Belgorod state technological University named after V. G. Shukhov
Russian Federation


References

1. Ахмедиев Н.Н., Корнеев В.И., Кузьменко Ю.В. Возбуждение нелинейных поверхностных волн гауссовыми световыми пучками // ЖЭТФ. 1985. Т. 88. №1. С. 107-115. URL: http://www. jetp.ac.ru/cgi-bin/e/index/e/61/1/p62?a=list. (дата обращения 16.07.2018).

2. Савотченко С.Е. Локализация волн вблизи интерфейса нелинейных сред с пространственной дисперсией // Известия высших учебных заведений. Физика. 2004. Т. 47. №5. С. 79-84. DOI:10.1023/B:RUPJ.0000046330.92744.73

3. Савотченко С.Е. Особенности локализации нелинейных возбуждений вблизи дефекта с внутренней структурой // Вестник Воронежского государственного университета. Серия: Физика. Математика. 2016. № 4. С. 51-59. URL: http://www.vestnik. vsu.ru/pdf/physmath/2016/04/2016-04-05.pdf. (дата обращения 16.07.2018).

4. Kivshar Yu.S., Kosevich A.M., Chubykalo O.A. Radiative effects in the theory of beam propagation at nonlinear interfaces // Phys. Rev. A. 1990. Vol. 41, issue 3. Rp. 1677-1688. DOI: 10.1103/ PhysRevA.41.1677.

5. Герасимчук И.В., Ковалев А.С. Локализация нелинейных волн в слоистых средах // ФНТ. 2000. Т.26. №8. С. 799-809. DOI: 10.1063/1.1289129.

6. Abdullaev F.Kh., Baizakov B.B., Umarov B.A. Resonance phenomena in interaction of a spatial soliton with the modulated interface of two nonlinear media // Optics Communications. 1998. Vol. 156. Pp. 341-346. DOI: 10.1016/S0030-4018(98)00451-9.

7. Косевич А.М. Особенности двуканального резонансного рассеяния волны или частицы на плоском дефекте. ЖЭТФ. 1999. Т. 115. № 1. С. 306-317. URL: http://www.jetp.ac.ru/cgi-bin/ dn/r_115_0306.pdf. (дата обращения 16.07.2018).

8. Савотченко С.Е. Особенности рассеяния частиц и возбуждение квазилокальных состояний стационарным потоком в двухуровневой системе // Известия высших учебных заведений. Физика. 2001. Т. 44. №4. C. 67-73. DOI: 10.1023/A:1011952514072.

9. Савотченко С.Е. Взаимодействие локализованных состояний вблизи границы раздела нелинейных сред // Конденсированные среды и межфазные границы. 2017. Т. 19. № 2. С.291-295. URL:http://www.kcmf.vsu.ru/article.php?l=ru&aid=823. (дата об­ращения 16.07.2018).

10. Богдан М.М., Герасимчук И.В., Ковалев А.С. Динамика и устойчивость локализованных мод в нелинейных средах с точечными // ФНТ. 1997. Т. 23. № 2. С. 197-207. DOI: 10.1063/1.593346.

11. Коровай О.В., Хаджи П.И. Нелинейные поверхностные волны в симметричной трехслойной структуре, обусловленные генерацией экситонов и биэкситонов в полупроводниках // ФТТ. 2003. Т. 45. № 2. С. 364-368. URL: https://journals.ioffe.ru/articles/ viewPDF/4534. (дата обращения 16.07.2018).

12. Кившарь Ю.С., Агравал Г.П. Оптические солитоны. От волоконных световодов до фотонных кристаллов / Москва: Физматлит, 2005. 648 с.

13. Нелинейности в периодических структурах и метаматериалах. / Сб. статей под ред. Ю.С. Кившаря, Н.Н. Розанова / Москва: Физматлит, 2014. 371 с.


Review

For citations:


Savotchenko S.E. BOUND SOLITON STATES LOCALIZED NEAR DEFECT IN A NONLINEAR MEDIUM. Science. Innovations. Technologies. 2018;(3):65-78. (In Russ.)

Views: 38


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2308-4758 (Print)