Preview

Science. Innovations. Technologies

Advanced search

Solitone solutions complexifications of the Korteweg - de Vriz equation

Abstract

The Hirota method for construction of soliton solutions is applied to the complexification of the Korteweg-de Vries equation. To use the method, the complex equation is replaced by a system of two third-order equations into two real functions, which, using the Hirota differential operator, is reduced to a bilinear form that is quadratic in the functions considered. The existence of a one-soliton solution is proved, the real part of which has the form of a soliton, and the imaginary part is a kink. It is proved that the use of the classical perturbation theory approach does not make it possible to construct a two-soliton solution. A special connection between unknown functions is found, which made it possible to reduce the system to a single bilinear equation for which a two-soliton solution is constructed. It is shown that the obtained Hirota polynomial does not satisfy the required properties, which led to the impossibility of constructing a three-soliton solution.

About the Author

Tatyana Valentinovna Redkina
North-Caucasus Federal University
Russian Federation


References

1. Hirota R. Nonlinear partial difference equations V. Nonlinear equations reducible to linear equations / R. Hirota // J. Phys. Soc. Japan. 1979. V. 46. P. 312-319.

2. Hirota R. N-soliton of nonlinear network equations describing a Volterra system / R. Hirota // J. Phys. Soc. Japan. 1976. V. 40. P. 891-900.

3. Hirota R., Satsuma J. A variety of nonlinear network equations generated from the Backlund transformation for the Toda lattice / R. Hirota, J. Satsuma // Prog. Theoret. Phys. Suppl. 1976. V. 59. P. 64-100.

4. Новикова О.В. Автомодельные решения комплекснозначного нелинейного дифференциального уравнения в частных производных // Вестник Северо-Кавказского федерального университета. Научный журнал. Ставрополь. 2014 г №1 (40). С. 13-20.

5. Ньюэлл А. Солитоны в математике и физике. М.: Мир, 1989. 328 с.

6. Полянин А. Д. Методы решения нелинейных уравнений математической физики и механики / А.Д. Полянин, В.Ф. Зайцев, А.И. Журов. М.: Физматлит, 2005. 256 с.

7. Редькина Т. В. Некоторые свойства комплексификации уравнения Кортевега - дe Вриза // Изв. АН СССР Сер. матем. 1991.


Review

For citations:


Redkina T.V. Solitone solutions complexifications of the Korteweg - de Vriz equation. Science. Innovations. Technologies. 2018;(2):61-74. (In Russ.)

Views: 78


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2308-4758 (Print)