Preview

Science. Innovations. Technologies

Advanced search

Baclone transformation for a system of partial differential equations of the third order

Abstract

Clerain's ideas have been developed and the construction of differential relations of two nonlinear systems in partial derivatives has been realized. An analysis of a given system of equations of the third order is carried out. The general structure of the Backlund transformations is defined in the form of four differential equations. Differential couplings are defined so that they give the opportunity to get both systems. Proceeding from the fact that the initial system is linear in terms of the highest derivative of a spatial variable and contains only the irst-order derivative of the time variable, it was possible in the Baklund transformations to explicitly select the second derivatives with respect to the spatial variable and to clarify the relationship between the lower derivatives. It turned out that such connections are determined ambiguously. There are two honest cases that allow you to make a transition from one system to another.

About the Author

Tatyana Valentinovna Redkina
North-Caucasus Federal University
Russian Federation


References

1. Рыбников А. К. Связности Бэклунда и отображения Бэклунда, соответствующие эволюционным уравнениям второго порядка / А.К. Рыбников, К.В. Семенов // Известия высших учебных заведений. Математика. 2004. № 5. С. 52-68.

2. Лэм Д.Л. Введение в теорию солитонов / Д.Л. Лэм. М.: Мир, 1983. 294 с.

3. Miura R. M. Conservation laws for the fully nonlinear longwave equations / R. M. Miura // Stud. Appl. Math. 1974. V. 53. P. 45-56.

4. Miura R.M. Kortewegde Vries equation and generalizations II. Existence of conservation laws and constants of motion / R.M. Miura, CS Gardner, M.D. Kruskal // Journal of Mathematical Physics. V. 9. 1968. P. 1204-1209.

5. Павлов М.В. Уравнение Буссинеска и преобразования типа Миуры / М.В. Павлов // Фундаментальная и прикладная математика. 2004. Т. 10. № 1. С. 175-182.

6. Рыбников А.К. Отображения Бэклунда и преобразования Ли-Бэклунда как дифференциально-геометрические структуры // Фундаментальная и прикладная математика. 2010. Т. 16. № 1. С. 135-150.


Review

For citations:


Redkina T.V. Baclone transformation for a system of partial differential equations of the third order. Science. Innovations. Technologies. 2018;(1):23-42. (In Russ.)

Views: 36


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2308-4758 (Print)