Preview

Science. Innovations. Technologies

Advanced search

Mathematical modeling of large scale atmospheric circulation

Abstract

The geostrophic state plays extremely important role in the dynamics of the atmosphere. In the present article the analysis of the geostrophic state of the atmosphere is performed reviling the possibility of several situations. The first situation is the isobaric surface of the shape of flattened geoid at the pole. In this case pressure decreases in comparison with a static state at the pole, i.e., the global isobaric minimum takes place; at the same time the velocity and the velocity vorticity are equal zero at the pole. Next situation at which the isobaric surface takes the shape of extended geoid. In this case pressure increases in comparison with a static state at the pole, i.e., the global isobaric maximum takes place; the velocity and the velocity vorticity are also equal zero at the pole. The situation when the pole is a special point is also considered; the geostrophic wind velocity is nonzero and velocity vorticity tends to ininity in this case.

About the Authors

Anastasiya Yur'yevna Didenko
North-Caucasus Federal University
Russian Federation


Yekaterina Gennad'yevna Nabrodova
North-Caucasus Federal University
Russian Federation


Robert Gurgenovich Zakinyan
North-Caucasus Federal University
Russian Federation


References

1. Гилл А. Динамика атмосферы и океана. М.: Мир, 1986, Т. 1, 399 с.; Т. 2, 416 с.

2. Holton J.R. An Introduction to Dynamic Meteorology. Forth edition. Elsevier, 2004, p. 540.

3. Семенова Ю. А., Закинян А.Р., Смерек Ю.Л., Данилова Н. Е., Закинян Р.Г. Исследование вихревого состояния атмосферы // Наука. Инновации. Технологии, 2016, №3, С. 83-89

4. Матвеев Л.Т. Теория общей циркуляции атмосферы и климата Земли. - Л.: Гидрометеоиздат, 1991, 295 с.

5. Педлоски Дж. Геофизическая гидродинамика. М.: Мир, 1984, т.1, т.2, 811 с.

6. Steven M. Cavallo and Gregory J. Hakim, 2013, Physical Mechanisms of Tropopause Polar Vortex Intensity Change.

7. Zdunkowski W., Bott A. Dynamics of the Atmosphere: a Course in Theoretical Meteorology. Cambridge University Press, 2003, p. 719.

8. White А. A. and Bromley R. A. Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force (Q. J. R. Meteorol. Soc. (1995), 121, pp. 399-418).


Review

For citations:


Didenko A.Yu., Nabrodova Ye.G., Zakinyan R.G. Mathematical modeling of large scale atmospheric circulation. Science. Innovations. Technologies. 2017;(1):149-162. (In Russ.)

Views: 30


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2308-4758 (Print)