Preview

Science. Innovations. Technologies

Advanced search

Ensuring the integrity of information in an autonomous group of unmanned aerial vehicles by methods of modular arithmetic

Abstract

We consider an autonomous group of unmanned aerial vehicles, as well as options for the structure of the possible organization of their interaction (centralized and decentralized). When performing special tasks autonomous group drones form a spatially distributed and scalable data processing system with unpredictable and dynamically changeable structure in which the execution of the main "target" function to process information depends on the communication environment. The failure of the radio channel is subject to destructive influences, in particular, unintentional and intentional interference of organized purpose is a violation of the qualitative characteristics of information that determine its suitability in dealing with the target group functions autonomous unmanned aerial vehicles (UAVs). A key requirement to ensure the qualitative characteristics of the requirements for information is to ensure its integrity at all stages of the life cycle. Classical techniques used to ensure the integrity, and efficiently provide control data integrity at the micro level within a UAV, but at the same time do not solve this problem for the whole group. It is proposed for such conditions of functioning of the task of ensuring and monitoring the integrity of information as follows: a set of storage devices, placed on board a different, but united by a common purpose of the operation of UAVs, considered as a single storage system for the introduction of redundancy in information stored. For redundant data storage on board the UAV uses redundant modular polynomial codes. The proposed method provides the ability to restore the integrity of the data subjected to the destructive influence, and thus the physical loss of a predetermined maximum number of UAV does not lead to a partial or complete loss of it.

About the Authors

Dmitriy Vladimirovich Samoylenko
Mozhaisky Military Space Academy
Russian Federation


Oleg Anatolievich Finko
Military Academy of Communications
Russian Federation


References

1. Unmanned Aircraft Systems (UAS) Roadmap, 2005-2030. [Электронный ресурс]. URL: https://fas.org/irp/program/collect/uav_ roadmap2005.pdf (дата обращения 6.09.2016).

2. Timofeev A.V. Neural Multi-Agent Control of Robotic Systems // Proceedings of International Conference on Informatics and Control. St. Petersburg. 1997.V.2. №3. Р. 537 542.

3. Jun Li, Yifeng Zhou, and Louise Lamont. Communication Architectures and Protocols for Networking Unmanned Aerial Vehicles. [Электронный ресурс]. URL: https://www.researchgate.net/publi-cation/269304589_Communication_architectures_and_protocols_ for_networking_unmanned_aerial_vehicles.pdf (дата обращения 7.09.2016).

4. Кловский Д.Д. Передача дискретных сообщений по радиоканалам. М.: Радио и связь, 1982.

5. Самойленко Д.В., Финько О.А. Имитоустойчивая передача данных в защищенных системах однонаправленной связи на основе полиномиальных классов вычетов // Нелинейный мир. 2013. Т. 11. № 9. С. 647-659.

6. ГОСТ Р 51275-2006. Защита информации. Факторы воздействующие на информацию. Общие положения. М.: Стандартинформ. 2007.

7. Рекомендации по стандартизации Р 50.1.053-2005. Основные термины и определения в области технической защиты информации. М.: Стандартинформ. 2006.

8. Хетагуров Я.А., Руднев Ю.П. Повышение надежности цифровых устройств методами избыточного кодирования. М.: Энергия, 1974.

9. Verdel, Thomas. Duplication-based concurrent error detection in asynchronous circuits // DFT 2002. Proceedings. 17 th IEEE International Symp. 2002. P. 345-353.

10. Ван Тилборг Х.К.А Основы криптологии. Профессиональное руководство и интерактивный учебник. М.: Мир, 2006.

11. Standardization Agreement (STANAG) 7023/AEDP-9 NATO Primary Image Format. [Электронный ресурс]. URL: www.nato.int/ structur/AC/224/standart/7023/7023.html (дата обращ. 7.09.2016).

12. Mandelbaum D.M. On Efficient Burst Correcting Residue Polynomial Codes // Information and control. 1970. p. 319-330.

13. Акушский И.Я., Юдицкий Д.М. Машинная арифметика в остаточных классах. М.: Советское радио, 1968.

14. Mandelbaum D.M. A method of coding for multiple errors // IEEE Trans. On Information Theory. 1968. 14(3). p. 518-521.

15. Червяков Н.И., Нагорнов Н.Н. Коррекция ошибок при передаче и обработке информации, представленной в СОК, методом синдромного декодирования // Наука. Инновации. Технологии. 2015. № 2. С. 15-41.


Review

For citations:


Samoylenko D.V., Finko O.A. Ensuring the integrity of information in an autonomous group of unmanned aerial vehicles by methods of modular arithmetic. Science. Innovations. Technologies. 2016;(4):77-90. (In Russ.)

Views: 96


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2308-4758 (Print)