Preview

Science. Innovations. Technologies

Advanced search

The hardware implementation of binary translation algorithms in residual classes

Abstract

Residue number systems (RNS's) and arithmetic are useful for several-reasons,it has a wideapplication in digital signal processing and provides enhanced fault tolerance capabilities. In this work we discuss the basic concept of forward conversion with respect to the two types of moduli-set, special and arbitrary. Special will be {2" - 1,2",2" +1} and {2", 22" - 1,2",2" +1} and their techniques. Arbitrary moduli sets are depends on use of look up tables.

About the Authors

Nikolai Ivanovich Chervyakov
North Caucasus Federal University
Russian Federation


Safwat Chiad Algalda
North Caucasus Federal University
Russian Federation


References

1. A. Hariri, K. Navi and R. Rastegar. 2008. A new high dynamic range moduli set with efficient reverse converter. Computer and Mathematics with Applications. (55) 660-668

2. B. Premkumar. 2002. A formal framework for conversion from bina-ryto residue numbers. IEEE Transactions on Circuits and System II, 46(2):135-144.

3. N. S. Szabo and R. I. Tanaka. 1967. Residue Arithmetic and its Applications to Computer Technology, McGraw-Hill, New York.

4. Chervyakov N. I. et al. Computation of positional characteristics of numbers in RNS based on approximate method //2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW). - IEEE, 2016. - С. 177-179.

5. Chervyakov N.I., Lyakhov P.A., Babenko M.G. Digital filtering of images in a residue number system using inite-ield wavelets //Automatic Control and Computer Sciences. - 2014. - Т. 48. - №. 3. - С.180-189.

6. Chervyakov N. I. et al. An Approximate Method for Comparing Modular Numbers and its Application to the Division of Numbers in Residue Number Systems* //Cybernetics and Systems Analysis. -2014. - Т. 50. - №. 6. - С. 977-984.

7. Chervyakov N. I. et al. Use of modular coding for high-speed digital filter design //Cybernetics and Systems Analysis. - 1998. - Т. 34. -№. 2. - С. 254-260.

8. Chervyakov, N.I., Tyncherov, K.T., Veligosha, A.V. High-speed digital signal processing with using non-positional arithmetic// Radiotekhnika, pp. 23-27

9. S. Piestrak. 1994. Design of residue generators and multioperand modular adders using carry save adders. IEEE Transactions on Computers, 42 (1): 68-77.

10. A. Mohan. 1999. Eficient design of binary to RNS converters. Journalof Circuits and Systems, 9(3/4): 145-154.

11. A. Mohan. 2002. Residue Number Systems: Algorithms and Architectures. Kluwer Academic Publishers, Dordrecht.

12. B. Parhami and C. Y. Hung. 1994. Optimal table lookup schemes forVLSI implementation of input/output conversions and other residuenumber operations". In: VLSI Signal Processing VII, IEEE Press, New York.

13. F. Barsi. 1991. Mod m arithmetic in binary systems. Information Processing Letters, 40: 303-309.

14. D. K. Banerji and J. A. Brzozowski. 1972. On translation algorithm-sin RNS. IEEE Transaction on Computers, C-21: 1281-1285.

15. G. Alia and E. Martinelli. 1984. A VLSI Algorithm for direct andreverse conversion from weighted binary number to residue number-system. IEEE Transaction on Circuits and Systems, 31(12): 14251431.

16. G. Alia and E. Martinelli. 1990. VLSI binary-residue converters for-pipelined processing. The Computer Journal, 33(5): 473-475.

17. R. M. Capocelli and R. Giancarlo. 1998. Efficient VLSI networks for-converting an integer from binary system to residue number system andvice versa. IEEE Transactions on Circuits and System, 35(11):1425-1431.

18. G. Bi and E. V. Jones. 1988. Fast Conversion between binary an-dresidue numbers. Electronic Letters, 24(9): 1195-1997.


Review

For citations:


Chervyakov N.I., Algalda S.Ch. The hardware implementation of binary translation algorithms in residual classes. Science. Innovations. Technologies. 2016;(3):119-136. (In Russ.)

Views: 60


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2308-4758 (Print)