Preview

Science. Innovations. Technologies

Advanced search

METHOD FOR SOLVING ILL-POSED PROBLEMS FOR DIFFERENTIAL EQUATIONS WITH APPROXIMATELY GIVEN FUNCTIONS BASED ON THE REPRESENTATION OF THE SOLUTION OF INTEGRAL EQUATIONS

Abstract

The work outlines a method of constructing an approximate solution of the differential equation with the initial data obtained in the experiment (empirical functions), which are known with some errors. In such statement the problem belongs to the class of incorrect mathematical problems and often occurs, for example, in mathematical models of physical phenomena using measurement results of field experiments. This is due to the relevance of the research. To obtain the approximate solution of this problem requires construction of appropriate regularization algorithms based on the methods of the theory of functional analysis and ill-posed problems. In the present work is the construction of the approximate solution of odes with specified boundary conditions, are the so-called singular integrals. This allows you to put in the original equation Fredholm integral equation of the first kind and to find its numerical solution. This uses a machine approximation of functions and their derivatives corresponding singular integrals and regularization method convergence of the sequence of approximate solutions, which implemented the so-called generalized inverse operators. Built in the end, a computational model allows to obtain a stable solution of ill-posed problems.

About the Authors

Igor' Eduardovich Naats
North Caucasus Federal University
Russian Federation


Victoria Igorevna Naats
North Caucasus Federal University
Russian Federation


Roman Andreyevich Ryskalenko
North Caucasus Federal University
Russian Federation


References

1. Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М., 1979. 288 с.

2. Рыскаленко Р. А., Чемеригина М. С. Операторы обобщенного дифференцирования в численных методах решения нелинейного уравнения переноса с приближенными данными // Вестник Северо-Кавказского федерального университета. 2013. № 1 (34). С. 35-38.

3. Рыскаленко Р. А., Черкасова И. В. Интегральные представления функций в численных методах решения нестационарных задач переноса // Вестник Северо-Кавказского федерального университета (СКФУ). 2013. № 1.

4. Наац В. И., Наац И. Э., Рыскаленко Р. А. Расчетно-аналитические модели для дифференциальных уравнений с приближенными данными на основе представления решения интегралами // Наука. Инновации. Технологии: научный журнал Северо-Кавказского федерального университета. 2014. № 4. С. 60-71.

5. Наац В. И., Наац И. Э. Математические модели и численные методы в задачах экологического мониторинга атмосферы: монография. М.: Физматлит, 2010. 328 с.

6. Данфорд Н., Шварц Дж. Т. Линейные операторы: общая теория. М.: Изд-во иностранной литературы, 1962. 427 с.

7. Натансон И. П. Конструктивная теория функций. М.: Физматлит, 1949. 526 с.

8. Ланцош К. Практические методы прикладного анализа. М.: Физматлит, 1961. 524 с.

9. Сухарев А. Г. Минимаксные алгоритмы в задачах численного анализа. М., 1989. 354 с.

10. Лебедев В. И. Функциональный анализ и вычислительная математика. М.: Физматлит, 1994. 296 с.

11. Семенчин Е. А., Наац В. И., Наац И. Э. Математическое моделирование нестационарного переноса примеси в пограничном слое атмосферы: монография. М.: Физматлит, 2003. 291 с.


Review

For citations:


Naats I.E., Naats V.I., Ryskalenko R.A. METHOD FOR SOLVING ILL-POSED PROBLEMS FOR DIFFERENTIAL EQUATIONS WITH APPROXIMATELY GIVEN FUNCTIONS BASED ON THE REPRESENTATION OF THE SOLUTION OF INTEGRAL EQUATIONS. Science. Innovations. Technologies. 2015;(4):23-40. (In Russ.)

Views: 39


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2308-4758 (Print)