INVESTIGATION OF THE STABILITY OF A FOUR SPECIES MODEL INTERACTION BRINGING TO SYSTEMS OF TWO EQUATIONS
Abstract
We propose a method to study the problem of stability of the structure of four interacting communities through information systems of two nonlinear differential equations of Lotka-Volterra, if the previously found the coordinates of the stationary points. Depth case check the stability of the stationary points with positive coordinates, when all community co-exist. The proposed algorithm and the program of research on the stability of the stationary state with non-zero coordinates of a mathematical model of the dynamics of four interacting communities.
Keywords
алгоритм,
программа,
модель,
устойчивость,
дифференциальные уравнения,
стационарные состояния,
algorithm,
program,
model,
stability,
differential equations,
stationary states
References
1. Романов М. Ф., Федоров М. П. Математические модели в экологии. СПб.: Иван Федоров, 2003. 240 с.
2. Адамчук А.С., Амироков С.Р., Притула Т.К. Исследование поведения двух фирм с помощью вольтеровской модели взаимодействия сообществ // Вестник Северо-Кавказского федерального универсистета. 2014. №1(40). С. 9-13.
For citations:
Pritula T.K.
INVESTIGATION OF THE STABILITY OF A FOUR SPECIES MODEL INTERACTION BRINGING TO SYSTEMS OF TWO EQUATIONS. Science. Innovations. Technologies. 2014;(3):17-23.
(In Russ.)
Views:
38