Preview

Наука. Инновации. Технологии

Расширенный поиск

АНАЛИЗ КРУПНОМАСШТАБНОЙ ЦИРКУЛЯЦИИ АТМОСФЕРЫ ПО ДАННЫМ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА

Аннотация

Введение: общее описание круговорота воды в природе или гидрологического цикла, состоящего из испарения, конденсации и осадков, слишком просто, чтобы объяснить высокую степень сложности вовлеченных явлений. Несколько физических процессов вносят существенный вклад в определение окончательного баланса (или локального дисбаланса), например, перенос водяного пара, сублимация, поверхностный сток, влажность почвы, инфильтрация, перколяция, поглощение растений и поток подземных вод. Облака и осадки, наряду с массовым обменом водяным паром, играют существенную роль в изменчивости климата как на глобальном, так и на региональном уровнях. Они влияют не только на климат, но и на погоду всех масштабов и определяют наличие воды. Материалы и методы исследований: круговорот воды в природе является наиболее важным физическим механизмом, обеспечивающим существование жизни на Земле. Его компоненты охватывают атмосферу, сушу и океаны. Цикл состоит из испарения, сублимации, переноса водяного пара, конденсации, осадков, стока, инфильтрации и просачивания, потока подземных вод и поглощения растений. Для правильного баланса глобального водного цикла необходимы наблюдения для всех этих процессов с глобальной точки зрения. В частности, осадки требуют постоянного мониторинга, поскольку они являются наиболее важным компонентом цикла, особенно в условиях изменяющихся климатических характеристик. Пассивные и активные датчики на борту метеорологических спутников и спутников окружающей среды теперь предоставляют достаточно полные данные, которые позволяют лучше измерять осадки из космоса, чтобы улучшить наше понимание ускорения / замедления цикла в текущих и прогнозируемых климатических условиях. Результаты исследований и их обсуждение: целью данной статьи является создание современной картины текущего состояния наблюдений за осадками из космоса с перспективой на ближайшее будущее спутниковой группировки, приложений для моделирования и управления водными ресурсами. В частности, в настоящее время проблема прогноза паводков является актуальной проблемой, как с научной, так и с практической точки зрения. Хотя в целом картина формирования паводков ясна и понятно, что они в основном определяются интенсивностью и продолжительностью осадков над бассейном реки, но математического подхода, в рамках которого можно было спрогнозировать для конкретного бассейна момент наступления паводков с достаточной заблаговременностью, все еще нет. Это связано с наличием множества взаимозависимых факторов, влияющих на накопление влаги в бассейне реки. Поэтому любая автоматизированная система прогноза паводка должна опираться на данные дистанционного зондирования Земли из космоса. Выводы: в работе получена новая математическая модель паводков с распределенными параметрами. Показано, что предложенная математическая модель описывает режим с обострением. Это значит, что за конечное время количество влаги в почве стремится к бесконечности.

Об авторах

Р. Г. Закинян
Северо-Кавказский федеральный университет
Россия


А. Р. Закинян
Северо-Кавказский федеральный университет
Россия


Список литературы

1. Schneider, U.; Finger, P.; Meyer-Christo_er, A.; Rustemeier, E.; Ziese, M.; Becker, A. Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere 2017, 8, 52.

2. Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068-1072.

3. Trenberth, K.E.; Smith, L.; Qian, T.; Dai, A.; Fasullo, J. Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeorol. 2007, 8, 758-769.

4. Abbott, B.W.; Bishop, K.; Zarnetske, J.P.; Hannah, D.M.; Frei, R.J.; Minaudo, C.; Chapin, F.S., III; Krause, S.; Conner, L.; Ellison, D.; et al. A water cycle for the Anthropocene. Hydrol. Proc. 2019.

5. Denman, K.L.; Brasseur, G.; Chidthaisong, A.; Ciais, P.; Cox, P.M.; Dickinson, R.E.; Hauglustaine, D.; Heinze, C.; Holland, E.; Jacob, D.; et al. Couplings Between Changes in the Climate System and Biogeochemistry. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge Univ. Press: Cambridge, UK; New York, NY, USA, 2007. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg 1 -chapter7-1.pdf (accessed on 28 August 2019).

6. Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth's global energy budget. Bull. Am. Meteorol. Soc. 2009, 90, 311-324.

7. Loeb, N.G.;Wielicki, B.A.; Doelling, D.R.; Smith, G.L.; Keyes, D.F.; Kato, S.;Manalo-Smith, N.;Wong, T. Toward optimal closure of the Earth's top-of-atmosphere radiation budget. J. Clim. 2009, 22, 748-766.

8. Siler, N.; Roe, G.H.; Armour, K.C.; Feldl, N. Revisiting the surface-energy-flux perspective on the sensitivity of global precipitation to climate change. Clim. Dyn. 2019, 53, 3983.

9. Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Aerosols, climate and the hydrological cycle. Science 2001, 294,2119-2124.

10. Mercado-Bettin, D.; Salazar, J.F.; Villegas, J.C. Long-term water balance partitioning explained by physical and ecological characteristics in world river basins. Echohydrolgy 2019, 12, 2072.

11. Vergopolan, N.; Fisher, J.B. The impact of deforestation on the hydrological cycle in Amazonia as observed from remote sensing. Int. J. Remote Sens. 2016, 37, 5412-5430.

12. Ciemer, C.; Boers, N.; Hirota, M.; Kurths, J.; Muller-Han-sen, F.; Oliveira, R.S.; Winkelmann, R. Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nat. Geosci. 2019, 12, 174-179.

13. Bonnesoeur, V.; Locatelli, B.; Guariguata, M.R.; Ochoa-To-cachi, B.F.; Vanacker, V.; Mao, Z.; Stokes, A.; Mathez-Sti-efel, S.-L. Impacts of forests and forestation on hydrological services in the Andes: A systematic review. For. Ecol. Manag. 2019, 433, 569-584.

14. Ellison, D. From Myth to Concept and Beyond-The BioGeo-Physical Revolution and the Forest-Water Paradigm; UNFF 13; UN: Geneva, Switzerland, 2018; p. 45.

15. Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; van Noordwijk, M.; Creed, I.F.; Pokorny, J.; et al. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Chang.2017, 43, 51-61.

16. Hader, D.-P.; Barnes, P.W. Comparing the impacts of climate change on the responses and linkages between terrestrial and aquatic ecosystems. Sci. Total Environ. 2019, 682, 239-246.

17. Korenaga, J.; Planavsky, N.J.; Evans, D.A.D. Global water cycle and the coevolution of the Earth's interior and surface environment. Philos. Trans. R. Soc. A 2017, 375, 0393.

18. Gleeson, T.; Zipper, S.C.; Erlandsson, L.W.; Porkka, M.; Jaramillo, F.; Gerten, D.; Fetzer, I.; Cornell, S.E.; Piemon-tese, L.; Gordon, L.; et al. The water planetary boundary: A roadmap to illuminate water cycle modifications in the An-thropocene. Earth ArXiv 2019.

19. Konar, M.; Garcia, M.; Sanderson, M.R.; Yu, D.J.; Sivapa-lan, M. Expanding the scope and foundation of sociohydrol-ogy as the science of coupled human-water systems.Water Resour. Res. 2019, 55, 874-887.

20. Roobavannan, M.; Kandasamy, J.; Pande, S.; Vigneswaran, S.; Sivapalan, M. Role of sectoral transformation in the evolution of water management norms in agricultural catchments: A sociohydrologic modeling analysis. Water Resour. Res. 2017, 53, 8344-8365.

21. D'Odorico, P.; Carr, J.; Dalin, C.; Dell'Angelo, J.; Konar, M.; Laio, F.; Ridoli, L.; Rosa, L.; Suweis, S.; Tamea, S.; et al. Global virtual water trade and the hydrological cycle: Patterns, drivers, and socio-environmental impacts. Environ. Res. Lett. 2019, 14, 053001.

22. Sun, G.; Hallema, D.; Asbjornsen, H. Ecohydrological processes and ecosystem services in the Anthropocene: A review. Ecol. Proc. 2017, 6, 35.

23. Abbott, B.W.; Bishop, K.; Zarnetske, J.P.; Minaudo, C.; Chapin, F.S., III; Krause, S.; Hannah, D.M.; Conner, L.; Ellison, D.; Godsey, S.E.; et al. Human domination of the global water cycle absent from depictions and perceptions. Nat. Geosci. 2019, 12, 533-540.

24. Smith, M.D. The ecological role of climate extremes: Current understanding and future prospects. J. Ecol. 2011, 99, 651-655.

25. Sivapalan, M. From engineering hydrology to Earth system science: Milestones in the transformation of hydrologic science. Hydrol. Earth Syst. Sci. 2018, 22, 1665-1693.

26. Marsalek, J.; Jimemez-Cisneros, B.; Karamouz, M.; Malmquist, P.-A.; Goldenfum, J.; Chocat, B. Urban Water Cycle Processes and Interactions; UNESCO Water Series; Taylor & Francis: Leiden, The Netherlands, 2008; p. 152; ISBN 978-0415453462.

27. Hao, L.; Huang, X.; Qin, M.; Liu, Y.; Li, W.; Sun, G. Ecohy-drological processes explain urban dry island e_ects in a wet region, Southern China. Water Resour. Res. 2018, 54, 67576771.

28. Pena-Guzman, C.A.; Malgarejo, J.; Prats, D.; Torres, A.; Martinez, S. Urban water cycle simulation/management models: A review. Water 2017, 9, 285.

29. Lahoz, W.A.; De Lannoy, G.J.M. Closing the gaps in our knowledge of the hydrological cycle over land: Conceptual problems. Surv. Geophys. 2014, 35, 623-660.

30. Lettenmaier, D.P. Observational breakthroughs lead the way to improved hydrological predictions. Water Resour. Res. 2017,53, 2591-2597.

31. Levizziani, V. and Cattani E. Satellite Remote Sensing of Precipitation and the Terrestrial Water Cycle in a Changing Climate. Remote Sens. 2019, 11, 2301; doi:10.3390/rs11192301

32. Руководство по гидрологической практике. Том II. Управление водными ресурсами и практика применения гидрологических методов. ВМО № 168. Шестое издание. 2012. 324 с.

33. Тихонов А.Н., Самарский А.А.Уравненияматематической физики. М.: Изд-во МГУ. 6-е издание. 1999. 799 с.

34. Bergstrom, S., 1992: The HBV model - its structure and applications. SMHI Reports RH, No. 4, Norrkping, Sweden.

35. Bergstrom, S., 1995: The HBV model. In Singh, V.P. (ed): Computer Models of Watershed Hydrology, Water Resources Publications. Colorado, United States, 443, 476.

36. DHI (Danish Hydraulic Institute), 1985: Introduction to the SHE-European Hydrologic System, Horsholm.

37. Refsgaard, J.C. and Abbott, M.B. 1996: The role of distributed modeling in water resources management. In: M.B. Abbott and J. Ch. Refsgaard, (eds.), 1996: Distributed Hydro-logical Modeling, Water Science and Technology Library, Vol. 22, Kluwer, Dordrecht.


Рецензия

Для цитирования:


Закинян Р.Г., Закинян А.Р. АНАЛИЗ КРУПНОМАСШТАБНОЙ ЦИРКУЛЯЦИИ АТМОСФЕРЫ ПО ДАННЫМ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА. Наука. Инновации. Технологии. 2020;(2):91-114.

For citation:


Zakinyan R.G., Zakinyan A.R. ANALYSIS OF LARGE-SCALE CIRCULATION OF THE ATMOSPHERE BY DATA OF REMOTE SENSING OF THE EARTH FROM SPACE. Science. Innovations. Technologies. 2020;(2):91-114. (In Russ.)

Просмотров: 49


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2308-4758 (Print)