Preview

Science. Innovations. Technologies

Advanced search

ANALYSIS OF LARGE-SCALE CIRCULATION OF THE ATMOSPHERE BY DATA OF REMOTE SENSING OF THE EARTH FROM SPACE

Abstract

Introduction: a general description of the water cycle in nature or the hydrological cycle, consisting of evaporation, condensation and precipitation, is too simple to explain the high degree of complexity of the phenomena involved. Several physical processes contribute significantly to determining the final balance (or local imbalance), for example, water vapor transport, sublimation, surface runoff, soil moisture, infiltration, percolation, plant absorption, and groundwater flow. Clouds and precipitation, along with the massive exchange of water vapor, play a significant role in climate variability, both globally and regionally. They affect not only the climate, but also the weather of all scales and determine the availability of water. Materials and methods of the research: the water cycle in nature is the most important physical mechanism that ensures the existence of life on Earth. Its components cover the atmosphere, land and oceans. The cycle consists of evaporation, sublimation, water vapor transfer, condensation, precipitation, runoff, iniltration and seepage, groundwater flow and absorption of plants. For the correct balance of the global water cycle, observations are necessary for all these processes from a global point of view. In particular, precipitation requires constant monitoring, as it is the most important component of the cycle, especially in conditions of changing climatic characteristics. Passive and active sensors aboard meteorological and environmental satellites now provide sufficiently comprehensive data that allows better measurements of precipitation from space to improve our understanding of cycle acceleration / deceleration in current and predicted climatic conditions. The results of the study and their discussion: the purpose of this article is to create a modern picture of the current state of observations of precipitation from space with the prospect for the near future of a satellite constellation, applications for modeling and water resources management. In particular, at present the problem of flood forecasting is an urgent problem, both from a scientific and from a practical point of view. Although the overall picture of the formation of loods is clear and understandable that they are mainly determined by the intensity and duration of precipitation over the river basin, there is still no mathematical approach in which it was possible to predict the time of the onset of floods with a sufficient lead time. This is due to the presence of many interdependent factors affecting the accumulation of moisture in the river basin. Therefore, any automated flood forecasting system should rely on Earth remote sensing data from space. Conclusions: a new mathematical model of floods with distributed parameters is obtained. It is shown that the proposed mathematical model describes an aggravated regime. This means that over a inite time, the amount of moisture in the soil tends to ininity.

About the Authors

R. G. Zakinyan
North-Caucasus Federal University
Russian Federation


A. R. Zakinyan
North-Caucasus Federal University
Russian Federation


References

1. Schneider, U.; Finger, P.; Meyer-Christo_er, A.; Rustemeier, E.; Ziese, M.; Becker, A. Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere 2017, 8, 52.

2. Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068-1072.

3. Trenberth, K.E.; Smith, L.; Qian, T.; Dai, A.; Fasullo, J. Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeorol. 2007, 8, 758-769.

4. Abbott, B.W.; Bishop, K.; Zarnetske, J.P.; Hannah, D.M.; Frei, R.J.; Minaudo, C.; Chapin, F.S., III; Krause, S.; Conner, L.; Ellison, D.; et al. A water cycle for the Anthropocene. Hydrol. Proc. 2019.

5. Denman, K.L.; Brasseur, G.; Chidthaisong, A.; Ciais, P.; Cox, P.M.; Dickinson, R.E.; Hauglustaine, D.; Heinze, C.; Holland, E.; Jacob, D.; et al. Couplings Between Changes in the Climate System and Biogeochemistry. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge Univ. Press: Cambridge, UK; New York, NY, USA, 2007. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg 1 -chapter7-1.pdf (accessed on 28 August 2019).

6. Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth's global energy budget. Bull. Am. Meteorol. Soc. 2009, 90, 311-324.

7. Loeb, N.G.;Wielicki, B.A.; Doelling, D.R.; Smith, G.L.; Keyes, D.F.; Kato, S.;Manalo-Smith, N.;Wong, T. Toward optimal closure of the Earth's top-of-atmosphere radiation budget. J. Clim. 2009, 22, 748-766.

8. Siler, N.; Roe, G.H.; Armour, K.C.; Feldl, N. Revisiting the surface-energy-flux perspective on the sensitivity of global precipitation to climate change. Clim. Dyn. 2019, 53, 3983.

9. Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Aerosols, climate and the hydrological cycle. Science 2001, 294,2119-2124.

10. Mercado-Bettin, D.; Salazar, J.F.; Villegas, J.C. Long-term water balance partitioning explained by physical and ecological characteristics in world river basins. Echohydrolgy 2019, 12, 2072.

11. Vergopolan, N.; Fisher, J.B. The impact of deforestation on the hydrological cycle in Amazonia as observed from remote sensing. Int. J. Remote Sens. 2016, 37, 5412-5430.

12. Ciemer, C.; Boers, N.; Hirota, M.; Kurths, J.; Muller-Han-sen, F.; Oliveira, R.S.; Winkelmann, R. Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nat. Geosci. 2019, 12, 174-179.

13. Bonnesoeur, V.; Locatelli, B.; Guariguata, M.R.; Ochoa-To-cachi, B.F.; Vanacker, V.; Mao, Z.; Stokes, A.; Mathez-Sti-efel, S.-L. Impacts of forests and forestation on hydrological services in the Andes: A systematic review. For. Ecol. Manag. 2019, 433, 569-584.

14. Ellison, D. From Myth to Concept and Beyond-The BioGeo-Physical Revolution and the Forest-Water Paradigm; UNFF 13; UN: Geneva, Switzerland, 2018; p. 45.

15. Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; van Noordwijk, M.; Creed, I.F.; Pokorny, J.; et al. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Chang.2017, 43, 51-61.

16. Hader, D.-P.; Barnes, P.W. Comparing the impacts of climate change on the responses and linkages between terrestrial and aquatic ecosystems. Sci. Total Environ. 2019, 682, 239-246.

17. Korenaga, J.; Planavsky, N.J.; Evans, D.A.D. Global water cycle and the coevolution of the Earth's interior and surface environment. Philos. Trans. R. Soc. A 2017, 375, 0393.

18. Gleeson, T.; Zipper, S.C.; Erlandsson, L.W.; Porkka, M.; Jaramillo, F.; Gerten, D.; Fetzer, I.; Cornell, S.E.; Piemon-tese, L.; Gordon, L.; et al. The water planetary boundary: A roadmap to illuminate water cycle modifications in the An-thropocene. Earth ArXiv 2019.

19. Konar, M.; Garcia, M.; Sanderson, M.R.; Yu, D.J.; Sivapa-lan, M. Expanding the scope and foundation of sociohydrol-ogy as the science of coupled human-water systems.Water Resour. Res. 2019, 55, 874-887.

20. Roobavannan, M.; Kandasamy, J.; Pande, S.; Vigneswaran, S.; Sivapalan, M. Role of sectoral transformation in the evolution of water management norms in agricultural catchments: A sociohydrologic modeling analysis. Water Resour. Res. 2017, 53, 8344-8365.

21. D'Odorico, P.; Carr, J.; Dalin, C.; Dell'Angelo, J.; Konar, M.; Laio, F.; Ridoli, L.; Rosa, L.; Suweis, S.; Tamea, S.; et al. Global virtual water trade and the hydrological cycle: Patterns, drivers, and socio-environmental impacts. Environ. Res. Lett. 2019, 14, 053001.

22. Sun, G.; Hallema, D.; Asbjornsen, H. Ecohydrological processes and ecosystem services in the Anthropocene: A review. Ecol. Proc. 2017, 6, 35.

23. Abbott, B.W.; Bishop, K.; Zarnetske, J.P.; Minaudo, C.; Chapin, F.S., III; Krause, S.; Hannah, D.M.; Conner, L.; Ellison, D.; Godsey, S.E.; et al. Human domination of the global water cycle absent from depictions and perceptions. Nat. Geosci. 2019, 12, 533-540.

24. Smith, M.D. The ecological role of climate extremes: Current understanding and future prospects. J. Ecol. 2011, 99, 651-655.

25. Sivapalan, M. From engineering hydrology to Earth system science: Milestones in the transformation of hydrologic science. Hydrol. Earth Syst. Sci. 2018, 22, 1665-1693.

26. Marsalek, J.; Jimemez-Cisneros, B.; Karamouz, M.; Malmquist, P.-A.; Goldenfum, J.; Chocat, B. Urban Water Cycle Processes and Interactions; UNESCO Water Series; Taylor & Francis: Leiden, The Netherlands, 2008; p. 152; ISBN 978-0415453462.

27. Hao, L.; Huang, X.; Qin, M.; Liu, Y.; Li, W.; Sun, G. Ecohy-drological processes explain urban dry island e_ects in a wet region, Southern China. Water Resour. Res. 2018, 54, 67576771.

28. Pena-Guzman, C.A.; Malgarejo, J.; Prats, D.; Torres, A.; Martinez, S. Urban water cycle simulation/management models: A review. Water 2017, 9, 285.

29. Lahoz, W.A.; De Lannoy, G.J.M. Closing the gaps in our knowledge of the hydrological cycle over land: Conceptual problems. Surv. Geophys. 2014, 35, 623-660.

30. Lettenmaier, D.P. Observational breakthroughs lead the way to improved hydrological predictions. Water Resour. Res. 2017,53, 2591-2597.

31. Levizziani, V. and Cattani E. Satellite Remote Sensing of Precipitation and the Terrestrial Water Cycle in a Changing Climate. Remote Sens. 2019, 11, 2301; doi:10.3390/rs11192301

32. Руководство по гидрологической практике. Том II. Управление водными ресурсами и практика применения гидрологических методов. ВМО № 168. Шестое издание. 2012. 324 с.

33. Тихонов А.Н., Самарский А.А.Уравненияматематической физики. М.: Изд-во МГУ. 6-е издание. 1999. 799 с.

34. Bergstrom, S., 1992: The HBV model - its structure and applications. SMHI Reports RH, No. 4, Norrkping, Sweden.

35. Bergstrom, S., 1995: The HBV model. In Singh, V.P. (ed): Computer Models of Watershed Hydrology, Water Resources Publications. Colorado, United States, 443, 476.

36. DHI (Danish Hydraulic Institute), 1985: Introduction to the SHE-European Hydrologic System, Horsholm.

37. Refsgaard, J.C. and Abbott, M.B. 1996: The role of distributed modeling in water resources management. In: M.B. Abbott and J. Ch. Refsgaard, (eds.), 1996: Distributed Hydro-logical Modeling, Water Science and Technology Library, Vol. 22, Kluwer, Dordrecht.


Review

For citations:


Zakinyan R.G., Zakinyan A.R. ANALYSIS OF LARGE-SCALE CIRCULATION OF THE ATMOSPHERE BY DATA OF REMOTE SENSING OF THE EARTH FROM SPACE. Science. Innovations. Technologies. 2020;(2):91-114. (In Russ.)

Views: 46


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2308-4758 (Print)