Preview

Science. Innovations. Technologies

Advanced search

Development of a numerical method for solving optimization problems approximation of the function given approximately and its derivatives based on the variational approach

Abstract

Introduction: the presented work continues the authors' research on the methods of the theory of approximation of functions of a real variable, given approximately, on the basis of their representation by integrals. Materials and methods of research: the paper studies the methods of representation of functions given approximately by their singular integrals in relation to the approximation problems, both the functions themselves and their derivatives. The problem of "recovery" of the function from approximate data is formulated, the basic concepts, definitions and approaches to its solution are briefly described. A numerical method for solving optimization problems of function approximation from approximate data is developed. The construction of the corresponding computational algorithm is carried out. The problem of «recovery» of derivatives of the function under study and approaches to its solution are considered. Research results and their discussion: a possible application of this theory is the problem of computational mathematics associated with the operators of generalized differentiation of summable functions and finding the so-called weak solutions for boundary value problems of mathematical physics. The practical significance of the results is that the proposed methods and approaches can be used in applied problems of the theory of approximation of functions, problems of applied analysis and boundary value problems of mathematical physics, using approximately given initial data obtained in the course of physical experiments or empirical functions.

About the Authors

Игорь Igor Naats
North-Caucasus Federal University
Russian Federation


Victoria Igorevna Naats
North-Caucasus Federal University
Russian Federation


Елена Elena Yartseva
North-Caucasus Federal University
Russian Federation


References

1. Наац И.Э., Наац В.И., Ярцева Е.П. Построение обобщенных производных для суммируемых функций на основе их сингулярных интегралов и исследование регуляризации их сходимости / Естественные и технические науки в современном мире: сборник научных статей по итогам XII международной научно-практической конференции (г Москва, 10 февраля 2017 г.). М.: Научный журнал «CHRONOS». 2017. С. 54-62.

2. Наац И.Э., Наац В.И., Рыскаленко Р.А., Ярцева Е.П. Операторы потенциального типа в задачах прикладного анализа / Наука. Инновации. Технологии: Научный журнал Северо-Кавказского федерального университета. Ставрополь, 2017. № 3. С. 42-60.

3. Наац, И.Э., Ярцева Е.П. Методы приближения суммируемых функций на основе интеграла Стилтьеса применительно к задачам прикладного анализа / Наука. Инновации. Технологии: Научный журнал Северо-Кавказского федерального университета. Ставрополь. 2016. №1. С. 33-46.

4. Наац И.Э. Метод численного решения краевой задачи для уравнения в частных производных с эмпирическими функциями на основе интегрального уравнения Фредгольма первого рода / И.Э. Наац, В.И. Наац, Р.А. Рыскаленко // Наука. Инновации. Технологии: Научный журнал Северо-Кавказского федерального университета. Ставрополь. 2016. №3. С. 30-41.

5. Наац, В.И. Вычислительная модель для дифференциального уравнения с эмпирическими функциями на основе интегрального уравнения Фредгольма первого рода / В.И. Наац, И.Э. Наац, Р.А. Рыскаленко // Наука. Инновации. Технологии: Научный журнал Северо-Кавказского федерального университета. Ставрополь. 2016. №2. С. 37-48.

6. Наац, В.И. Расчетно-аналитические модели для дифференциальных уравнений с приближенными данными на основе представления решения интегралами / В.И. Наац, И.Э. Наац, Р.А. Рыскаленко // Наука. Инновации. Технологии: Научный журнал Северо-Кавказского федерального университета. Ставрополь. 2014. №4. С. 60-71.

7. Наац, И.Э. Метод решения некорректной задачи для дифференциального уравнения с приближенно заданными функциями на основе представления решения интегральными уравнениями / В.И. Наац, И.Э. Наац, Р.А. Рыскаленко // Наука. Инновации. Технологии: Научный журнал Северо-Кавказского федерального университета. Ставрополь. 2015. №4. С. 16-31.

8. Тихонов, А.Н. Методы решения некорректных задач / А.Н. Тихонов, В.Я. Арсенин. М.: Физматлит. 1979. 288 с.

9. Данфорд, Н. Линейные операторы: общая теория / Н. Данфорд, Дж. Т. Шварц. М.: Изд-во иностранной литературы, 1962. 427 с.


Review

For citations:


Naats I., Naats V.I., Yartseva E. Development of a numerical method for solving optimization problems approximation of the function given approximately and its derivatives based on the variational approach. Science. Innovations. Technologies. 2018;(4):7-20. (In Russ.)

Views: 37


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2308-4758 (Print)