Preview

Science. Innovations. Technologies

Advanced search

Mathematical models of message authentication in the post-quantum cryptosystems based on error-correcting coding

Abstract

The paper discusses possibilities for use of message authentication signatures schemes based on error-correcting coding which may be candidates for use in post-quantum cryptography. Code-based cryptography draws attention not only highly resistant to attacks of various kinds, but also performance hardware implementation and the additional advantage of the ability to correct errors in the transmission signals over data channels. Digital signatures algorithm based on error-correcting coding is described. The results of computer simulation of the algorithm for the case of the use of Reed-Solomon codes are presented. The cost of software implementation of this algorithm is evaluated. There is shown that promising in the use of error-correcting codes for message authentication.

About the Authors

Aleksandr Aleksandrovich Kuznetsov
V. N. Karazin Kharkiv National University
Russian Federation


Igor Ivanovich Svatovskiy
V. N. Karazin Kharkiv National University
Russian Federation


Aleksey Vladimirovich Shevtsov
Kharkiv National University of Radio Electronics
Russian Federation


References

1. Neal Koblitz and Alfred J. Menezes A riddle wrapped in an enigma. URL: https://eprint.iacr.org/2015/1018 (posted 03-Dec-2015).

2. NSA acknowledges need for quantum-safe crypto. URL: http:// www.idquantique.com/nsa-quantum-safe-crypto/ (handling date: 25 May 2016).

3. NISTIR 8105 DRAFT Report on Post-Quantum Cryptography. National Institute of Standards and Technology Internal, Report 8105, February 2016. 15 p.

4. ETSI White Paper No. 8, Quantum Safe Cryptography and Security: An Introduction, Benefits, Enablers and Challenges, June 2015.

5. Evaluating Post-Quantum Asymmetric Cryptographic Algorithm Candidates / Tolga Acar, Josh Benaloh, Craig Costello and Dan Shumow. MSR Security and Cryptography Group. URL: http://csrc. nist.gov/groups/ST/post-quantum-2015/presentations/session7-shumow-dan.pdf (handling date: 25 May 2016).

6. Bernstein D. Post-quantum cryptography [Text] / D. Bernstein, J. Buchmann, E. Dahmen. Berlin: Springer, 2009. 246 p.

7. McEliece R. J. A public-key cryptosystem based on algebraic coding theory. DSN Progress Report 42-44, Jet Propulsion Lab., Pasadena, CA, January-February, 1978. P. 114-116.

8. Niederreiter H. Knapsack-type cryptosystems and algebraic coding theory / Н. Niederreiter // Problem Control and Inform Theory, 1986, v. 15. P. 19-34.

9. Courtois N. How to achieve a McEliece-based digital signature scheme / Courtois N., Finiasz M. and Sendrier N. // In Advances in Cryptology - ASIACRYPT 2001. Springer-Verlag, 2001, vol. 2248. P. 157-174.

10. Сидельников В.М. О системе шифрования, построенной на основе обобщенных кодов Рида-Соломона / В.М. Сидельников, С.О. Шестаков // Дискретная математика. 1992. Т. 4. Вып. 3. С. 57-63.

11. Горбенко Ю. I. Анал1з шлях1в розвитку криптографи пюля появи квантових комп'ютер1в / Ю. I. Горбенко, Р. С. Ганзя // Вюник На-цюнального ушверситету "Льв1вська полггехшка". 2014. № 806. С. 40-48.

12. Ray A. Perlner and David A. Cooper Quantum resistant public key cryptography: a survey. In Proceedings of the 8th Symposium on Identity and Trust on the Internet (IDtrust '09), Kent Seamons, Neal McBurnett, and Tim Polk (Eds.). New York, ACM, 2009. P. 85-93.

13. Богданов А.Ю. Квантовые алгоритмы и их влияние на безопасность современных классических криптографических систем / А.Ю. Богданов, И.С. Кижватов. М.: РГГУ, 2005.

14. Engelbert D., Overbeck R., and Schmidt A. A summary of McE-liecetype cryptosystems and their security // Journal of Mathematical Cryptology, 2007. № 1(2). P. 151-199.

15. M. Finiasz Parallel-CFS - Strengthening the CFS McEliece-Based Signature Scheme. In A. Biryukov, G. Gong, and D.R. Stinson, editors, Selected Areas in Cryptography, vol. 6544 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2011. P. 159-170.

16. Морелос-Сарагоса Р. Искусство помехоустойчивого кодирования. Методы, алгоритмы, применение / пер. с англ. В.Б. Афанасьева. М.: Техносфера, 2006.

17. Берлекэмп Э. Алгебраическая теория кодирования. М.: Мир, 1971.

18. Деев В.В. Методы модуляции и кодирования в современных системах связи. СПб.: Наука, 2007.

19. Рассомахин С.Г., Малофей О.П., Малофей А.О. Оптимизация алгоритма передачи числовых позиционных кодов для дискретных каналов c флуктуационным шумом // Наука. Инновации. Технологии. 2015. № 1. С. 51-59.


Review

For citations:


Kuznetsov A.A., Svatovskiy I.I., Shevtsov A.V. Mathematical models of message authentication in the post-quantum cryptosystems based on error-correcting coding. Science. Innovations. Technologies. 2017;(2):29-42. (In Russ.)

Views: 64


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2308-4758 (Print)