Preview

Science. Innovations. Technologies

Advanced search

Principle of compression images based on discrete wavelet transform

Abstract

In the article the basic principles of image compression using discrete wavelet transform is presented. Promising imaging techniques EZW and SPIHT, based on zero-tree algorithm are shown. An example shows the operation of SPIHT image processing method with an integrated zero-tree algorithm structure. The simulation package application environment MATLAB compress grayscale images based on discrete wavelet transform. The conclusion is that suitable for practical purposes and visually high quality image can be obtained by resetting up to 85% of the processed image coefficients. Resetting up to 50% of the processed image coefficients allows to obtain the picture, do not differ in the numerical characteristics of the peak signal to noise ratio and the structural similarity index of the original grayscale image.

About the Authors

Nikolai Ivanovich Chervyakov
North Caucasus Federal University
Russian Federation


Pavel Alexeyevich Lyakhov
North Caucasus Federal University
Russian Federation


Diana Ivanovna Kalita
North Caucasus Federal University
Russian Federation


Kirill Sergeyevich Shulzhenko
North Caucasus Federal University
Russian Federation


References

1. D. Taubman and M. Marceilin, JPEG2000: Image Compression Fundamentals, Standards, and Practice, Kluwer, 2001.

2. G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press, New York, 1996.

3. M. Vetterii and J. Kovacevic, Wavelets and Subband Codings Prentice-Hall, Englewood Cliffs, NJ, 1995.

4. Т. M. Cover and I A. Thomas, Elements of Information Theory, Wiley & Sons, Inc, New York, 1991.

5. C. E. Shannon, "A mathematical theory of communication.)) Bell Syst. Tech. J., 27, 379-423, 623-656, 1948.

6. С. E. Shannon, "Coding theorems for a discrete source with a fidelity criterion," IRE Nat. Cony. Rec.* 4,142-163, March 1939.

7. A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, Kluwer Academic, Boston, MA, 1992.

8. N. S. Jayant and P. Noll, Digital Coding of waveforms, Prentice- Hall, Englewood Gilffs, NJ, 1984.

9. S. P. Lloyd, ''Least squares quantization in PCM», IEEE Tram, on Info. Theory, IT-28, 127-135, March 1982.

10. H. Gish and J. N. Pierce, "Asymptotically efficient quantizing," IEEE Trans, on Info. Theory, IT-14,5,676-683, September 1968.

11. Переберин А.В. О систематизации вейвлет-преобразований // Вычислительные методы и программирование. 2001. Т. 2. С. 15-40.

12. Дремин И.М., Иванов О.В., Нечитайло В.А. Вейвлеты и их использование. // Успехи физических наук. 2001. № 5. С. 465-501.

13. Блаттер К. Вейвлет-анализ. Основы теории. М.: Техносфера, 2006. 272 с.

14. M. W. Marceilin and T. R. Fischer, "Trellis coded quantization of memoryless and Gauss-Markov sources," IEEE Trans, on Comm., 38, I, 82-93, January 1990.

15. T. Berger, Rate Distortion Theory, Prentice-Hall, Englewood Cliffs, NJ, 1971.

16. N. Farvardin and J. W. Modestino. "Optimum quantizer performance for a class of non-Gaussian memoryless sources," IEEE Trans, on Info. Theory, 30, 485-497, May 1984.

17. Аникуева О.В., Ляхов П.А., Червяков Н.И. Реализация дискретного вейвлет-преобразования в системе остаточных классов специального вида // Инфокоммуникационные технологии. 2014. Т. 12. №4. С 4-9.

18. D. A. Huffman, "A method for the construction of minimum redundancy codes," Proc. IRE, 40, 1098-1101» 1952.

19. Т. C. Bell, J. G. Cleary, and I. H. Witten, Text Compression, Prentice-Haii, Englewood Cliffs, New Jersey, 1990.

20. J. W. Woods, Subband Image coding, Kluwer Academic, Boston, MA, 1991.

21. M. Antonini, M. Baiiaud, P. Mathieu, and I. Daubechies, "Image coding using wavelet transform," IEEE Trans, on Image Process1, 2, 205-220, April 1992.

22. Holland B. RAT: RC Amenability Test for Rapid Performance Prediction /URL: http://www.cse.sc.edu

23. Huynh-Thu Q., Ghanbari M. Scope of validity of PSNR in image/ video quality assessment // Electronics Letters. 2008. 44, No. 13. Pp 800-801.

24. Wang Z. Image quality assessment: from error visibility to structural similarity // IEEE Transactions image processing. 2004. 13, No. 4. Pp. 600-61.


Review

For citations:


Chervyakov N.I., Lyakhov P.A., Kalita D.I., Shulzhenko K.S. Principle of compression images based on discrete wavelet transform. Science. Innovations. Technologies. 2016;(3):97-118. (In Russ.)

Views: 54


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2308-4758 (Print)