Preview

Science. Innovations. Technologies

Advanced search

METHODS OF APPROXIMATION OF SUMMABLE FUNCTIONS ON THE BASIS OF THE INTEGRAL OF STIELTJES WITH RESPECT TO APPLIED ANALYSIS

Abstract

Iscusses empirical functions that were defined when-blajenno, for example, based on some measurements of the observed process or phenomena obtained in the experiment. Such functions are considered to be summable in a certain area of observation, but not differencethe get adequate in the usual sense. Difficulties associated with the use of conventional derivatives for the analysis of such functional dependencies require the development of such methods of functional analysis which would operirovat-whether the so-called generalized derivatives (also operators of generalized differentiation). The corresponding apparatus was proposed by the authors earlier is applied to solve differential equations in case of discrepancy and based on the performance of the studied functions by singular integrals. Within the present work from the suggested above approach is extended to the case when the integrals in IP-initial representations of functions have the form of the Stieltjes integral (Lebesgue - Stieltjes). In a number of application tasks desired functions as the initial assumptions required the need to present in the form of the Stieltjes integral. A similar situation can occur in the theory of potentials and the theoretical physics problems that use inte-integral operators of potential type. This approach significantly extended the content of the unit of approximation of functions, giving it greater efficiency and clarity in those tasks when you have to «construct» the model of functional dependence according to rough data (also in conditions of a priori uncertainty). Thus, the computational schemes that are associated with practical carrying out-she described the method in applications in some cases can be much simpler and more eficient algorithms that are required for the implementation of integral representations of functions based on singular integrals. The work performed in the construction and justiication of the computational method, an example illustrating possible applications of the presented Noi the theory of representation of empirical functions.

About the Authors

Igor Eduardovich Naats
North Caucasus Federal University
Russian Federation


Elena Pavlovna Yartseva
North Caucasus Federal University
Russian Federation


References

1. Ланцош К. Практические методы прикладного анализа / К. Ланцош. - М.: Физматлит, 1961. - 524 с.

2. Наац В.И. Расчетно-аналитические модели для дифференциальных уравнений с приближенными данными на основе представления решения интегралами / В.И. Наац, И.Э. Наац, Р.А. Рыскаленко // Наука. Инновации. Технологии: научный журнал Северо-Кавказского федерального университета. - Ставрополь. - 2014. - № 4. - С. 60-71.

3. Наац И.Э. Расчетно-аналитические модели для уравнений параболического типа с приближенными данными на основе методов прикладного гармонического анализа и вариационного метода взвешенной невязки / В.И. Наац, И.Э. Наац, Р.А. Рыскаленко // Наука. Инновации. Технологии: научный журнал Северо-Кавказского федерального университета. - Ставрополь, 2015. - № 3. - С. 22-34.

4. Наац И.Э. Метод решения некорректной задачи для дифференциального уравнения с приближенно заданными функциями на основе представления решения интегральными уравнениями / В.И. Наац, И.Э. Наац, Р.А. Рыскаленко // Наука. Инновации. Технологии: научный журнал Северо-Кавказского федерального университета. - Ставрополь, 2015. - № 4. - С. 16-31.

5. Данфорд H. Линейные операторы: общая теория / Н. Данфорд, Дж. Т. Шварц. - М.: Изд-во иностранной литературы, 1962. - 427 с.

6. Лебедев В.И. Функциональный анализ и вычислительная математика / В.И. Лебедев. - М.: Физматлит, 1994. - 296 с.

7. Натансон И.П. Конструктивная теория функций / И.П. Натонсон. - М.: Физматлит, 1949. - 526 с.

8. Тихонов А.Н. Методы решения некорректных задач / А.Н. Тихонов, В.Я. Арсенин. - М., 1979. - 288 с.


Review

For citations:


Naats I.E., Yartseva E.P. METHODS OF APPROXIMATION OF SUMMABLE FUNCTIONS ON THE BASIS OF THE INTEGRAL OF STIELTJES WITH RESPECT TO APPLIED ANALYSIS. Science. Innovations. Technologies. 2016;(1):33-46. (In Russ.)

Views: 39


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2308-4758 (Print)