Preview

Science. Innovations. Technologies

Advanced search

Study of structure stability in a mathematical model of four interacting groups

Abstract

We will discuss the problem of mathematical modeling of dynamic processes and structure change in a model with four interacting groups using a system of Walter's nonlinear differential equations. We will show that it is possible to find a stationary state with positive coordinates when all groups exist. We will also suggest an algorithm and a program for finding the stationary state with non-zero coordinates and testing its stability in a mathematical model of dynamics between four interacting groups.

About the Authors

Anna Stanislavovna Adamchuk
North Caucasus Federal University
Russian Federation


Stanislav Raufovich Amirokov
North Caucasus Federal University
Russian Federation


Tatyana Konstantinovna Pritula
Company «Teploset»
Russian Federation


References

1. Чернавский Д. С., Щербаков А. В., Зульпукаров М. М. Модель конкуренции. Москва: Препринт ИПМ № 64, 2006 г

2. Амироков С.Р., Адамчук А.С. Исследование изменений структуры модели конкуренции трех сообществ // Вестник СКФУ №2(35). 2013. С. 9-13.

3. Буданов В. Г. Проблема параметров порядка и глобализация // Глобализация: синергетический подход. М.: РАГС, 2002. С. 47-50.

4. Нахушев А. М. Уравнения математической биологии. М.: Высшая школа, 1995. 301 с.


Review

For citations:


Adamchuk A.S., Amirokov S.R., Pritula T.K. Study of structure stability in a mathematical model of four interacting groups. Science. Innovations. Technologies. 2015;(2):7-14. (In Russ.)

Views: 30


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2308-4758 (Print)